Semi-empirical MNDO SCF-MO Study of Ion Radicals derived from Tricyclo[3.3.3.0]undecane, and from Some Related Alkanes

Christopher Glidewell

Chemistry Department, University of St. Andrews, St. Andrews, Fife KY16 9ST

Molecular geometries have been calculated, using the MNDO method, for the cation and anion radicals derived from tricyclo[3.3.3.0] undecane ([3.3.3] propellane), for the corresponding neutral alkane and its dication, and for the cation radicals derived from the related series of acyclic alkanes: Me₃CH, Me₃CMe, and Me₃CCMe₃. Hyperfine coupling constants have also been calculated for these radicals. The two radicals derived from [3.3.3] propellane have very similar molecular and electronic structures, and differ principally in the character of the unique C-C bond, a one-electron σ bond in the cation and a three-electron σ^* bond in the anion. Both the cations Me₃CMe⁺ and Me₃CCMe₃⁺ are calculated to be unstable as isolated species to dissociation into Me₃C⁺ and CH₃^{*} or Me₃C^{*} respectively, a conclusion supported by experimental gas-phase data; the observed hyperfine couplings allow deductions to be made about their structures in frozen solution. Two isomeric structures have been calculated for the cation Me₃CCH⁺, having calculated proton hyperfine couplings in reasonable agreement with those observed experimentally.

The γ -radiolysis of alkanes in electron-scavenging media can yield the corresponding molecular cation radicals.^{1–8} The CH₄⁺ cation has not yet been identified (although the isoelectronic BH₄ has recently been reported ⁹), but many other simple alkane cation radicals have been unambiguously detected. Of particular interest, as a closely related series all with potential three-fold symmetry, are the cations derived from Me₃CH,⁸ Me₄C,⁸ Me₆C₂,^{1,2,8} and [3.3.3]propellane (tricyclo[3.3.3.0]undecane)⁵ (1).

Two isomeric forms of the Me₃CH⁺ cation radical have been detected,⁸ one at 4 K, the other at 77 K, but nothing is as yet known about their detailed geometric structures. The cation radical (2) derived from [3.3.3]propellane is characterised by hyperfine coupling to six protons only, the the e.s.r. spectrum was assigned ⁵ primarily by comparison with the spectrum of the di-aza σ^* cation-radical (3) where selective deuteriation has been used to establish the assignment.¹⁰

The cation (2) is closely related to the acyclic cation radical $Me_3CCMe_3^+$: it has been suggested ¹¹ that both this cation, and the Me_4C^+ ion, owe their survival in halogenocarbon matrices primarily to cage effects, since according to MNDO calculations these cations dissociate to Me_3C^+ and Me_3C^+ or CH_3^+ respectively. A central C-C distance of *ca.* 2.5 Å was estimated from the e.s.r. data in frozen CBr_4 . For the cyclic analogue (2), no such dissociation is possible.

In this work we report the results of some MNDO^{12,13} calculations on the geometries of (1) and (2), and on the corresponding dication (4) and monoanion (5) derived from (1), together with calculations of the $A(^{1}H)$ values, using the INDO method;¹⁴ on the structures and A values for the two isomeric forms of Me₃CH⁺; and on the A values calculated from a number of MNDO optimisations of the geometries of Me₄C⁺ and Me₆C₂⁺, at a range of fixed values of the unique C-C distance. These calculations serve not only to support the assignments of the experimental e.s.r. spectra, but to determine molecular geometries, and to amplify the comparisons between the cations Me₃X⁺ (X = H, CH₃, CMe₃) and ([3.3.3]propellane).

Calculations

All calculations of molecular geometry and energy were made using the MNDO method ^{12,13} with a VAX 11/780 computer. UHF wavefunctions were used for all open-shell species, and

Table 1. Calculated geometrical data for (1), (2), (4), and	(5)
--	-----

Distances (Å)	(1)	هم (2)	(4)	(5)			
a	1.608	2.372	2.754	2.335			
b	1.559	1.513	1.505	1.498			
с	1.539	1.547	1.558	1.545			
Angles (°)							
a`b	106.3	94.1	80.0	94.6			
b^b′	112.4	119.5	120.0	119.4			
b^c	108.4	113.5	115.6	113.8			
c c′	107.7	113.7	119.1	113.1			
Dihedral ^a	18.7	32.8	34.1	30.5			
$\Delta H_{\rm f}$ */kJ mol ⁻¹	-136.2	+788.6	+2 030.8	-23.1			
Defined as angle between normals to the planes bab" and cc'.							

geometries were completely optimised unless stated otherwise. Hyperfine splittings were calculated by the INDO method,¹⁴ using the geometries calculated by the MNDO technique.

Results and Discussion

[3.3.3] Propellane and its Ions.—The optimised molecular geometries of (1), (2), (4), and (5) all have manxane-like conformation of C_{3h} symmetry (Table 1), as found experimentally for (4)¹⁵ and for bicyclo[3.3.3] undecane-1,5-diol,¹⁶

and as determined ¹⁷ by molecular mechanics for the neutral parent of (3). In neutral (1) the unique C-C distance is calculated to be long (1.61 Å) although with a bond order of 0.95, and the HOMO and LUMO are both concentrated in this bond, being σ and σ^* , of A' and A'' symmetry respectively. Whereas in (1) the quaternary carbons are only modestly distorted from tetrahedral, in the cation-radical (2) these carbons are separated by 2.37 Å and are almost planar, and in the dication (4), the unique C-C distance is calculated to be 2.75 Å, with the cationic carbons exactly planar. The geometry of the σ^* anion-radical (5), which has a three-electron C-C bond, is very similar (Table 1) to that of the σ cation-radical (2), which has a one-electron C-C bond.

The calculated hyperfine coupling constants are given in Table 2 for (2) and (5). For both (2) and (5), the major coupling is that involving H_{A^*} although the calculated value for (2) is only *ca*. 2/3 the observed value, it is nonetheless very much bigger than the other couplings, which were unresolved experimentally.⁵ The calculated direction cosines between the C-H_A and C-H_B bonds and the SOMO in (2) are 0.75 and 0.25, whereas the bonds to both H_C and H_D are orthogonal to the SOMO; these geometric features account in large measure for the variations in the observed couplings. Similarly in (5) the bonds C-H_A and C-H_B make direction cosines of 0.75 and 0.26 with the SOMO: not only are C-H_C and C-H_D orthogonal to the σ^* SOMO, but in (5) both H_C and H_D lie in one of its nodal planes.

In (5) the σ^* SOMO is much less tightly bound than the σ SOMO in (2) [I(Koopmans') = 14.19 eV in (2), 1.97 eV in (5)], and the resultant increase in the diffuseness of the SOMO is consistent with the large coupling to H_A calculated in (5).

 $Me_6C_2^+$ and Me_4C^+ .—We have suggested ¹¹ previously, based upon MNDO calculations, that the cation radicals $Me_6C_2^+$ and Me_4C^+ are unstable, in halogenocarbon matrices, with respect to loss of Me_3C^+ . Experimental gas-phase data support this contention.

The experimental gas-phase ΔH_f° values for neutral Me₆C₂ are ¹⁸ -22.57 and -167.4 kJ mol⁻¹, respectively, and the vertical ionisation energies are 10.37 and 10.90 eV, respectively: ¹⁹ the ΔH_f° values for the resultant, vertically ionised, cations are then +775 and +884 kJ mol⁻¹, respectively. The ΔH_f° sums for (Me₃C⁺ + Me₃C[•]) and (Me₃C⁺ + CH₃[•]) are ^{20.21} respectively 741 and 853 kJ mol⁻¹. Consequently the gas-phase, vertically ionised, cations are both unstable to dissociation by some 30 kJ mol⁻¹, in the sense found by the earlier MNDO calculations.¹¹ Consistent with this is the absence of molecular ion peaks in the electron-impact mass spectra of both Me₄C and Me₆C₂.²² **Table 3.** Calculated and observed $A(^{1}H)$ values for Me₆C₂⁺ and Me₄C⁺

(a) Me ₆ C ₂			
d(C-C)/Å	$A(^{1}\mathrm{H})/\mathrm{G}^{a}(\times 6)$	$A(^{1}H)/G(\times 12)$	Ratio
2.3	32.2	4.6	7.0
2.4	31.8	4.9	6.5
2.5	31.4	5.1	6.2
2.6	31.1	5.4	5.8
Observed ^b A	29	4.2	6.9
(b) Me ₃ C–CH	3+		
<i>d</i> (C−C)/Å	$A(^{1}H)/G(\times 3)$	$A(^{1}H)/G(\times 6)$	$A(^{1}H)/G (\times 3)^{c}$
1.90	44.5	4.9	- 3.2
1.95	42.4	4.9	- 5.7
2.00	40.1	4.9	-6.7
Observed ^d A	42	е	е

 a G = 10⁻⁴ T. b Ref. 1. c Unique methyl group. d Ref. 3. e Not resolved.

The hydrogen spin densities calculated ¹¹ by MNDO suggest that the unique C-C distances in $Me_6C_2^+$ and Me_4C^+ , in halogenocarbon matrices, are *ca.* 2.5 and 2.0 Å, respectively. In Table 3 are collected the *A* values calculated by the INDO method, using the MNDO-optimised geometries, at a range of fixed values of the unique C-C distances. The INDO results are broadly in accord with the previous calculations, except that the observed ratio of hyperfine couplings in $Me_6C_2^+$ is reproduced, by MNDO at a C-C distance of 2.5 Å and by INDO at a distance of 2.3 Å.

In the radical (2) the symmetry of the C_3CCC_3 core is necessarily D_{3h} rather than D_{3d} as found in $Me_6C_2^+$, but the overall ring conformation of (2) is such that, like $Me_6C_2^+$, there are six hydrogen atoms outside the core, with $A(^1H)$ 17 G. In $Me_6C_2^+$, the calculated spin densities indicate¹¹ that the preferred conformation observed¹ is that with six hydrogens outside the core and twelve in close contact between the two terminal planes of methyl carbons. The application of a simple $\cos^2\theta$ law to the observed A values in (2) and in $Me_6C_2^+$ yields a value for the direction cosine of the C-H_A bond in (2) of 0.77, essentially identical to the value of 0.75 obtained from the calculated structure. Consequently, although the calculated spin densities, and A values, derived for (2) are quantitatively in error, we can have confidence in the reliability of the calculated geometry for (2).

Isomers of Me_3CH^+ .—At 4 K the e.s.r. spectrum of Me_3CH^+ , whether in halogenocarbon or SF_6 matrices, is characterised ⁸ by hyperfine coupling to the unique hydrogen, with A 15 G, and to two further hydrogens, with A ca. 55 G, the exact values depending upon the matrix employed. In contrast at 77 K, in halogenocarbon matrices, the e.s.r. spectrum is quite different, exhibiting hyperfine couplings of 250 G to the unique hydrogen, and of 48 G to three other, equivalent, hydrogens. The assignments were confirmed ⁸ by use of selective deuteriation.

MNDO calculations have revealed two quite distinct minima, whose structures are summarised in Table 4. The higher-energy form has C_{3v} symmetry, with a SOMO strongly concentrated in the unique C-H bond. The calculated hyperfine couplings are in reasonable accord with those observed: the three hydrogens having A 48 G are those whose C-H bonds are parallel to the three-fold symmetry axis, and to the SOMO. The molecular and electronic structure of the Me₃C portion in this isomer are very similar to those calculated for the Me₃CCH₃⁺ cation, where the three-fold Me–C–Me angle is 116.3° (compared with 117.6° in Me₃CH⁺) and the hyperfine couplings are ca. 40 G (× 3) and 4.9 G (× 6).

^{*} The atom labelling follows that employed in ref 5: see also Table 2.

Table 4. Calculated parameters for the two isomers of Me₃CH⁺

The second minimum, of C_s symmetry, has a single methyl group bonded to the central carbon by a very long bond (*ca.* 1.92 Å) which is approximately normal to the unique C-H bond of an almost planar Me₂CH group. That this represents a genuine local minimum is confirmed, both by the force constant matrix, and by a series of refinements carried out at a range of fixed values of the long C-C distance. The SOMO is a bonding combination of A' symmetry, localised primarily in the C-C bonds, particularly the unique long C-C bond. The calculated hyperfine couplings (Table 4) are in rough agreement with those found experimentally⁸ at 77 K. The 54 G coupling arises from the two hydrogens, one in each methyl group of the Me₂CH fragments whose C-H bonds are approximately parallel to the unique C-C bond and the SOMO. The other hydrogens in these methyl groups are all close to nodal planes of the SOMO.

In the C_{3v} isomer the SOMO is normal to the plane defined by the three methyl carbons, while in the C_s isomer it is approximately normal to a plane defined by two methyl carbons and the unique hydrogen, in the Me₂CH fragment. All the differences between the e.s.r. spectra of the two isomers can be attributed to this apparent rotation of the SOMO.

Acknowledgements

I thank Professor M. C. R. Symons, University of Leicester, for valuable discussions, and the St. Andrews University Computing Laboratory for a generous provision of computing resources.

References

- 1 M. C. R. Symons and I. G. Smith, J. Chem. Res. (S), 1979, 382.
- 2 J. T. Wang and F. Williams, J. Phys. Chem., 1980, 84, 3156.
- 3 M. Iwasaki, K. Toriyama, and K. Nunono, J. Am. Chem. Soc., 1981, 103, 3591.
- 4 K. Toriyama, K. Nunone, and M. Iwasaki, J. Phys. Chem., 1981, 85, 2149.
- 5 R. W. Alder, R. B. Sessions, and M. C. R. Symons, J. Chem. Res. (S), 1981, 82.
- 6 T. J. Wang and F. Williams, Chem. Phys. Lett., 1981, 82, 177.
- 7 K. Toiryama, M. Iwasaki, and M. Fukaya, J. Chem. Soc., Chem. Commun., 1982, 1293.
- 8 K. Toriyama, K. Nunone, and M. Iwasaki, J. Chem. Phys., 1982, 77, 5891.
- 9 M. C. R. Symons, Tsing Chen, and C. Glidewell, J. Chem. Soc., Chem. Commun., 1983, 326.
- 10 R. W. Alder, R. B. Sessions, J. M. Mellor, and M. F. Rawlins, J. Chem. Soc., Chem. Commun., 1977, 747.
- 11 C. Glidewell, J. Chem. Res. (S), 1983, 22.
- 12 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899.
- 13 W. Thiel, P. Wiener, J. Steward, and M. J. S. Dewar, Quantum Chemistry Program Exchange, No. 428.
- 14 J. C. Schug, D. A. Brewer, and B. H. Lengsfield, Quantum Chemistry Program Exchange, No. 323.
- 15 G. A. Olah, G. Liang, P. v. R. Schleyer, W. Parker, and C. I. F. Watt. J. Am. Chem. Soc., 1977, 99, 966.
- 16 P. Murray-Rust, J. Murray-Rust, and C. I. F. Watt, *Tetrahedron*, 1980, 36, 2799.
- 17 R. W. Alder, R. J. Arrowsmith, A. Casson, R. B. Sessions, E. Heilbronner, B. Kovac, H. Huber, and M. Taagepera, J. Am. Chem. Soc., 1981, 103, 6137.
- 18 J. B. Pedley and J. Rylance, 'Sussex-N.P.L. Computer Analysed Thermochemical Data: Organic and Organometallic Compounds,' University of Sussex, 1977.
- 19 K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata, 'Handbook of He¹ Photoelectron Spectra of Fundamental Organic Molecules,' Japan Scientific Societies Press, Tokyo, 1981.
- 20 F. P. Lossing and G. P. Semeluk, Can. J. Chem., 1970, 48, 955.
- 21 D. F. McMillen and D. M. Golden, in 'Annual Review of Physical Chemistry,' eds. B. S. Rabinovitch, J. M. Schurr, and H. L. Strauss, Annual Reviews Inc., Palo Alto, 1982, pp. 493-532.
- 22 M. F. Lappert, J. B. Pedley, J. Simpson, and T. R. Spalding, J. Organomet. Chem., 1971, 29, 195.

Received 15th August 1983; Paper 3/1434